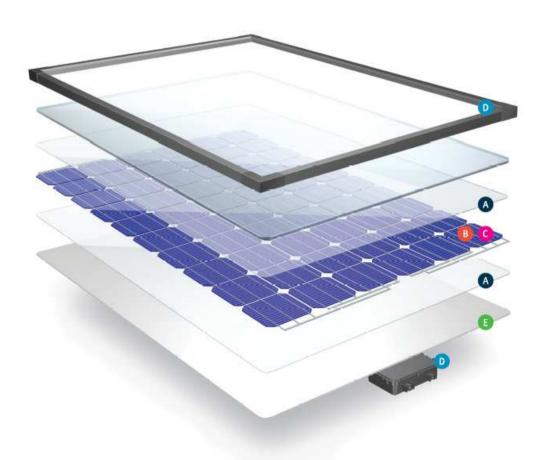


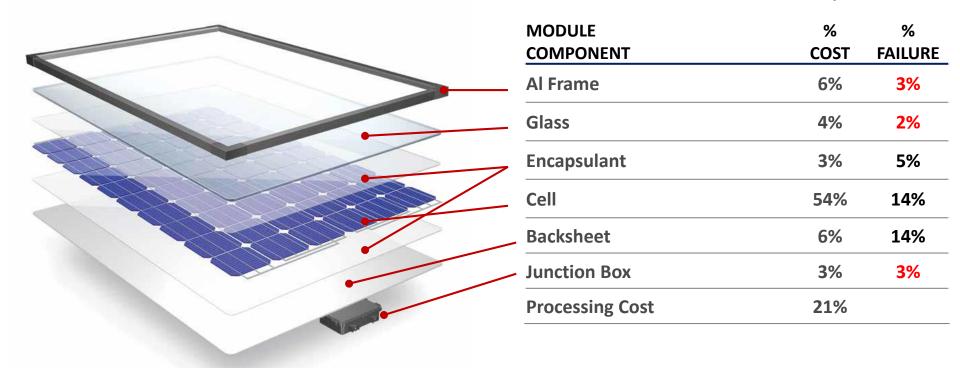
Is Module a Module?

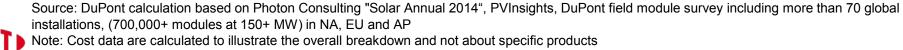

How to choose PV module?

- Efficieny
- Price
- Brand
- What else?

THE DUPONT PORTFOLIO OF INNOVATIVE MATERIALS FOR SOLAR MODULES

CRYSTALLINE SILICON MODULE



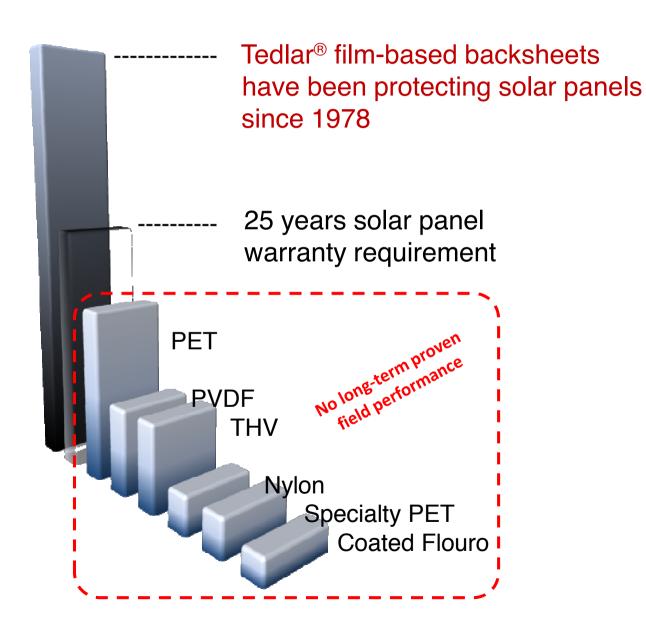

- A PHOTOVOLTAIC ENCAPSULANTS
 DuPont* PV5400 Series encapsulant sheeting
 DuPont* PV8600 Series encapsulant sheeting
- B PHOTOVOLTAIC METALLIZATIONS
 DuPont* Solamet* photovoltaic metallizations
- C SILICON DOPING TECHNOLOGIES

 DuPont* Innovalight* silicon inks
- D ELECTRICAL AND STRUCTURAL
 COMPONENT MATERIALS
 DuPont* Rynite* PET thermoplastic polyester resins
 DuPont*Crastin* PBT polybutylene terephthalate resins
- BACKSHEET MATERIALS
 DuPont Tedlar PVF films

Failure Rate By Product Component

Update red numbers

Tedlar® PVF Film Based Backsheets were Selected by NASA After Decade Long Module Reliability Program


Block	Years	Manufacturer	Top Cover	Encapsulant	Backsheet	Number of Modules	
I 1975		Sensor Tech	RTV-615	RTV-615	Aluminum		
	1975-1976	Solarex	Sylgard 184	Sylgard 184	NEMA-G10 Board	6,750	
		Solar Power	D.C. R4-3117	Sylgard 184	NEMA-G10 Board	6,750	
		Spectrolab	Glass	RTV-615	Aluminum	1	
		Sensor Tech	RTV-615	RTV-615	Aluminum		
	1976-1977	Solarex	Sylgard 184	Sylgard 184	NEMA-G10 Board	5, 291	
"	1970-1977	Solar Power	D.C. XL-2577	Sylgard 184	GFR Polyester Board	5,291	
		Spectrolab	Glass	PVB	Mylar®		
		Arco Solar	Glass	PVB	Tedlar®		
		Motorola	Glass	D.C 03-6527A	Stainless Steel	I	
III I	1978-1979	Sensor Tech	RTV-615	RTV-615	Aluminum	9,961	
		Solarex	Sylgard 184	Sylgard 184	NEMA-G 10 Board	ĺ	
		Solar Power	D.C. R4-3117	Sylgard 184	GFR Polyester Board		
		Arco Solar		PVB	Tedlar@/Stainless/Tedlar@		
	1980-1981	ASEC]	PVB	Tedlar®		
		GE Solar	1	GE SCS2402	MEAD PAN-L-Board	I	
ıv		Motorola	Glass	PVB	Tediar®/Al/Tediar®	481	
		Photowatt	Glass	PVB	Tedlar8/Al/Tedlar9] * °'	
		Solarex	l	EVA	Tedlar®	I	
		Solarex]	EVA	Tedlar®	I	
		Snire		FVΔ	Mvlarft/ALCoat		
	1981-1985	Arco Solar		EVA	Tedlar8/PET/Tedlar9		
		GE Solar	Glass		Tedlar8/PET/Al/Tedlar8	"10's" of Modules for	
V		MSEC			PET/Al/Tedlar®	evaluation	
		Solarex]		PET/PET/Tedlar8	CTURATION!	
		Spire			Tedlar®		

- US Department of Energy contracted NASA's Jet Propulsion Lab (JPL) to develop 30 year PV modules
- NASA's JPL conducted 5 rounds of fielded module and lab testing to develop reliable, durable, and safe 30 year PV modules
- Failure rates decreased from 45% in pre-Block V modules to less than 0.1% in Block V Modules
- All of the module designs in the 5th round of experiment adopted Glass/EVA/Tedlar®-based back sheet structure as the standard.

This Program Resulted in Adoption of Glass/EVA/Tedlar® Backsheet as the Safe And Reliable PV Module Construction

DuPont™ Tedlar® PVF Film Has 30+ Years of Proven Field Performance

Source: DuPont, various

Tedlar® PVF-based backsheets in the field

Low power loss and No material degradation

SYSU China 1985 0.4% annual power loss

Nara, Japan, 1983 0.2% annual power loss

Mont Soleil, Switz. 1992 0.3% annual power loss

SUPSI Switzerland 1982 0.4% annual power loss

SMUD USA 1984 0.9% annual power loss

Beijing 1999 0.7% annual power loss

BloombergNEF

BloombergNEF Tier 1 PV Module Maker List, 1Q 2023

February 24, 2023

In China, India, Turkey and some other markets, non-recourse finance is rare and cannot be assumed. From 2Q 2017, we will therefore require additional evidence that a deal is non-recourse (public disclosure or a copy of the agreement with a bank) to include a financing in our database and therefore count it for tiering.

4. Can I share this list on the internet?

No. If you have accessed this through your BloombergNEF subscription, you can share with selected business partners who will not release it further. Pirate copies on the internet may be doctored and are published without BNEF's permission and against our terms and conditions.

Table 1 shows the module makers which, as of 1Q 2023, meet our criteria of supplying projects with non-recourse financing from six different commercial banks in the last two years, as tracked by our database.

Table 1: Photovoltaic module manufacturers meeting BloombergNEF's Tier 1 criteria as of 1Q 2023

Firm/ brand	Annual module capacity, MW/year	Firm/ brand	Annual module capacity, MW/year
ZNShine*	10,000	Leapton Energy	2,000
Yingli*†	11,650	Jolywood*	3,000
Waaree*	9,000	Jinneng/ Jinergy	4,000
VSUN Solar*	3,800	Jinko*†	70,000
Ulica Solar	3,000	Jetion	2,500
Trina*†	60,000	JA Solar*†	51,000
Tongwei	14,000	Heliene*†	950
Suntech	15,000	Hanwha Q-Cells*†	12,400
Sunpro Power	2,000	Hansol Technics	600
Sumec/ Phono Solar*	4,000	Haitai Solar	8,000
Solar-Fabrik	50	First Solar*†	11,200
Sharp	210	Exiom Group	700
Seraphim	7,750	ET Solar Inc*	2,000
Risen Energy*	25,000	Eging*	10,000
Renesola	3,000	DMEGC*	7,500
Recom†	1,200	Chint/ Astronergy*†	22,000
Neo Solar Power/ URE	1,800	Canadian Solar	31,400
Maxeon*	10,100	Boviet Solar*	1,500
Luxen Solar	2,200	Anhui Huasun*	2,700
Longi*†	80,000	AE Solar*	1,600
		Total	508,810

Source: BloombergNEF Note: Methodology here. * denotes a company for which technical due diligence reports are available from PV Evolution Labs, PVEL. Contact Tristan.erion-lorico@pvel.com. † denotes manufacturers upon which RETC has recently conducted or is conducting technical due diligence. Contact info@retc-ca.com for details. Brands are shown in reverse alphabetical order to avoid giving the impression that position in the list is significant. Companies can download the dataset of financings here.

Historical Scorecard

The table below shows the history of top performance for all manufacturers featured in the 2022 Scorecard. Manufacturers are listed by the number of years they have been designated a Top Performer, in alphabetical order.

RELIABILITY SCORECARD	2022	2021	2020	2019	2018	2017	2016	2014
Jinko	•	•	•	•		•	•	•
Trina Solar	•	•	•	•	•	•	•	•
JA Solar	•	•	•	•			•	•
Qcells	•	•	•	•	•	•	•	
REC Group		•	•	•		•	•	
Astronergy						•		•
LONGi	•	•	•	•	•	•		
Adani Solar	•	•	•	•	•			
Maxeon/SunPower		•				•		
Phono Solar	•	•		•	•		•	
Seraphim/SEG Solar						•		
Suntech	•		•	•	•			•
Vikram Solar	•	•	•	•		•		
Boviet Solar	•	•	•	•				
First Solar								
HT-SAAE	•	•	•		•			
ZNShine	•			•				•
Talesun								
DMEGC	•	•						
ET Solar	•	•						
Heliene								
HHDC/SPIC	•	•						
Risen Energy	•	•						
VSUN	•	•						
Waaree	•							

JinkoSolar Global Layout

Providing highly localized solutions

12
Production Facilities

25000+ Employees

30+ Service Centers **3000+** Customers

160+
Covered
Countries

JinkoSolar Domestic Factories High-Efficient Capacity Layout

Jinko Solar Co., Ltd.

JinkoSolar Overseas Factories High-Efficient Capacity Layout

Global Leader in Technological Innovation

N-Type Mono Cell

N-Type Mono Module 23.53%

The 19th Time World Record Achieved by JinkoSolar

N-Type Mono Cell **25.4%** 18

968 Authorized Patents

The efficiency of N type TOPCon monocrystalline cell reaches **25.7%**

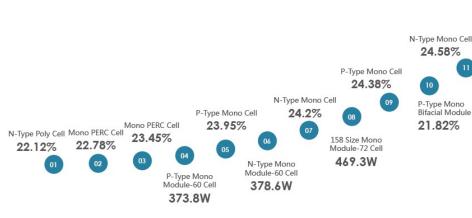
24.9%
N-Type Mono Cell
24.79%
N-Type Mono Module
23.01%

N-Type Mono

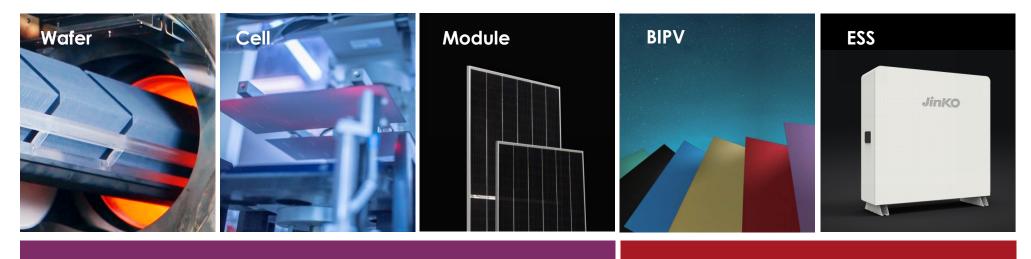
22.49%

N-Type Mono Cell

N-Type Mono Cell


25.25%

R&D Team 900+Engineers and Scientists


R&D Investments 1.274 Billion (CNY)

JinkoSolar Market Share Rankings in the Top Ten PV Markets, 2020

Our Core Businesses

Solar Business

We are continuously expanding the production capacity of silicon wafers, cells and modules to create a vertically integrated PV industrial chain

Our Solutions

BIPV+BAPV to foster the development of green buildings Solar+ Solutions and Energy Storage

Solutions - Solar+

Solar+ESS —— Solar+Building — Solar+Pumping — Solar+Communication

JinkoSolar Holding Co., Ltd. jinkosolar.com

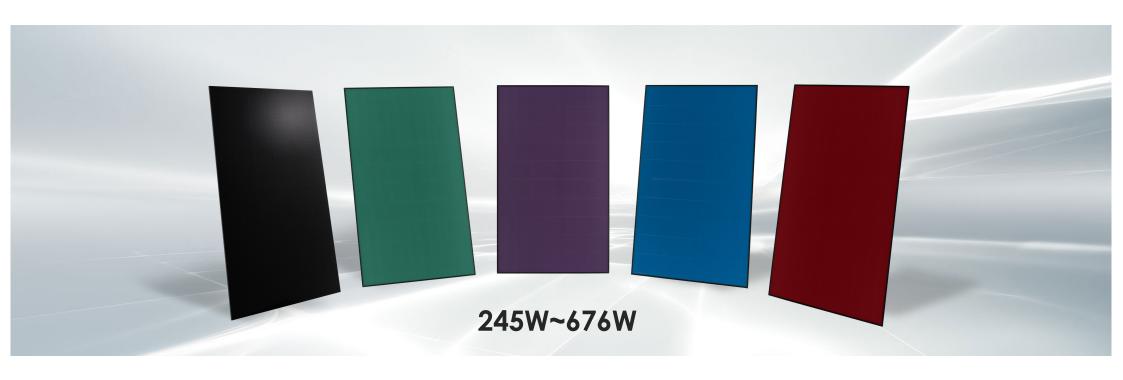
Our Solutions - Energy Storage Products

Residential Storage System

(1kWh-50kWh)

C&I Storage System

(50kWh-1MWh)


Utility Storage System

(≥1MWh)

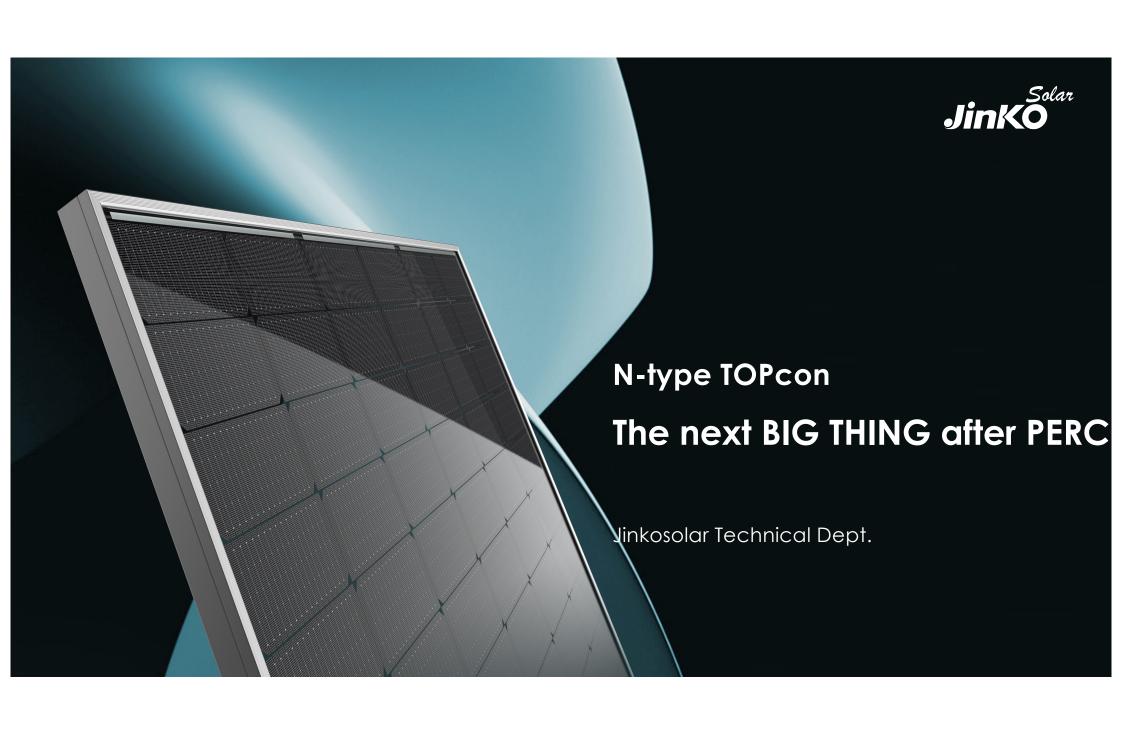
JinkoSolar Holding Co., Ltd. jinkosolar.com

Our Solutions - BIPV

Comprehensive power coverage | Diversified colors | Optimized transmittance | Full customization

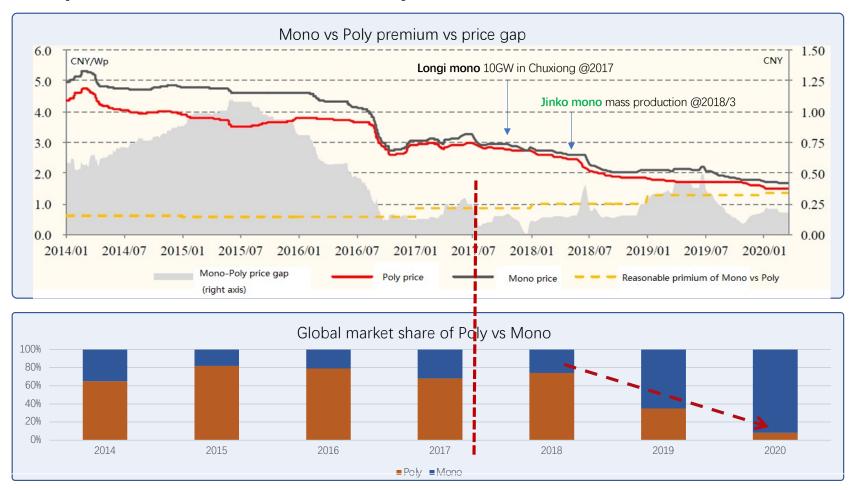
JinkoSolar Holding Co., Ltd. jinkosolar.com

Awards



- Ranked 325 in China's Fortune 500 in 2020, on the list for six consecutive years
- In 2020, ranked 144 of China's top 500 private enterprises in the All-China Federation of Industry and Commerce, on the list for seven consecutive years
- In 2020, ranked 10th in the "Top 500 Global New Energy Companies, and has been on the list for ten consecutive years
- 2020 HR Asia Best Employer
- 2020 "21st Century Business Herald" and "Excellent Board of Directors of Listed Companies"
- In 2019 won the Rushlight Natural Energy Award and Solar Energy Award
- 2019 Panel Technology Award
- 2019 Integrated Marketing Innovation Award
- 2018 World Brand Awards
- 2018 "The Asset" Best Corporate Governance Award-Gold Award
- 2018 Boston "Top 100 Global Challengers"
- Co-chair of the B20 Germany 2021 Climate and Energy Efficiency (ECRE) Taskforce
- 2016 Fortune's 16th fastest growing company in the world
- Member of B20 Hangzhou 2016 Infrastructure Taskforce
- 2015 Paris Climate Summit "Today's Change Award"
- Vice Chairman of the G20 China Business Council

jinkosolar.com

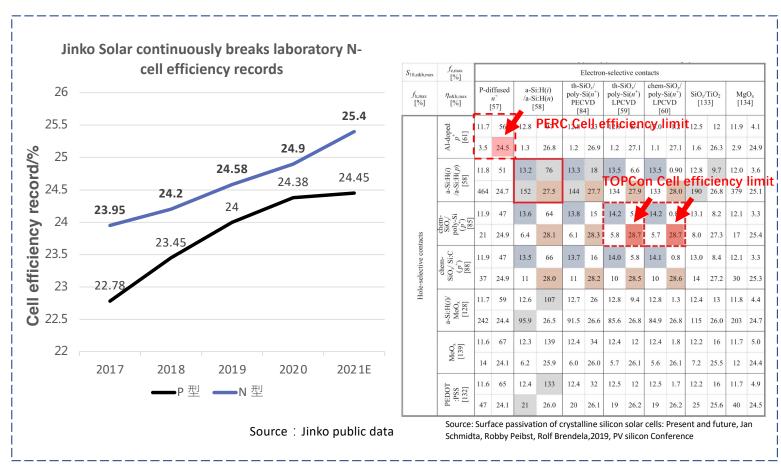

.

The past and future: Mono-vs-Poly and N-vs-P

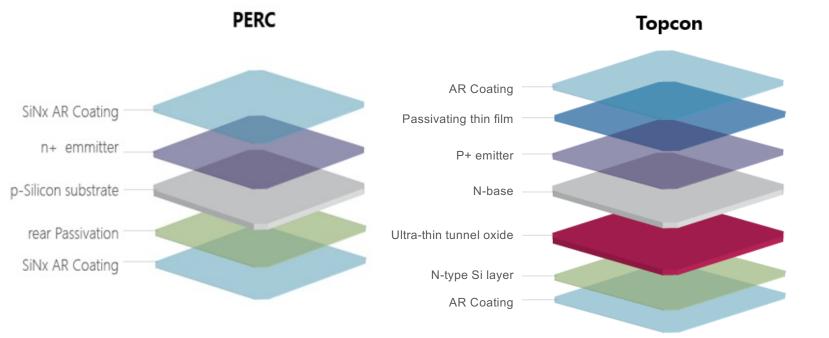
- 1. Longi led the story of Mono replacing Poly; It took 2-3 years for Mono to dominate the market after Mono vs Poly premium > price gap.
- 2. The story of N replacing P is very comparable with Mono-vs-Poly. Now the premium of N vs P is larger than its price gap. N might dominate the market gradually in next 2-3 years.
- 3. JinKO is leading the N replacing P story, like what Longi did in mono replacing poly story.

Background of N-type Technology

24.5%


Mass Production Efficiency

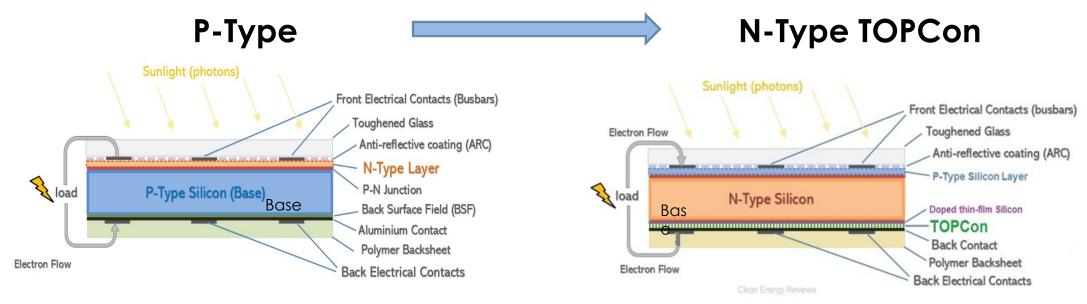
The application of Topcon technology has contributed to a new breakthrough of cells efficiency, in massproduction, the cells efficiency can reach 24.50%.


28.70%

Higher Efficiency Limits

Topcon cells have higher efficiency limit ($28.2\%^28.7\%$), much higher than that of PERC cells .

TOPCon


Higher boron atomic activation rate

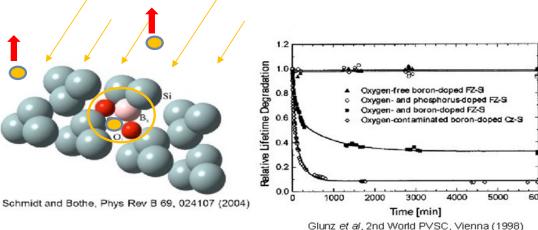
Less impurities

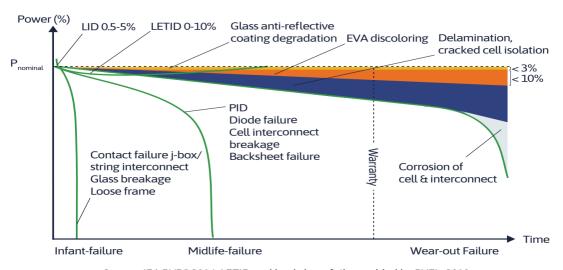
Better thickness uniformity

Better carrier conductivity

P Layer (Silicon doped with Boron) – Deficiency of electrons area, abundance of electon holes
P-N junction – depletion region created when P and N layers are in contact
N Layer (Silicon doped with Phosphorous) – Abundance of electrons, few electon holes

Due to the very nature and material composition N-type cells offer higher performance through having a greater tolerance to impurities and lower defects which increases overall efficiency. In addition N-type cells have greater temperature tolerance compared to both mono and multi P-type cells. More importantly **n-type cells do not suffer from the issues of LID** (light induced degradation) due to the boron-oxygen defects which are a common issue with P-type cells doped with Boron.


LID Defect - Light Induce Degradation


Solar JinKO

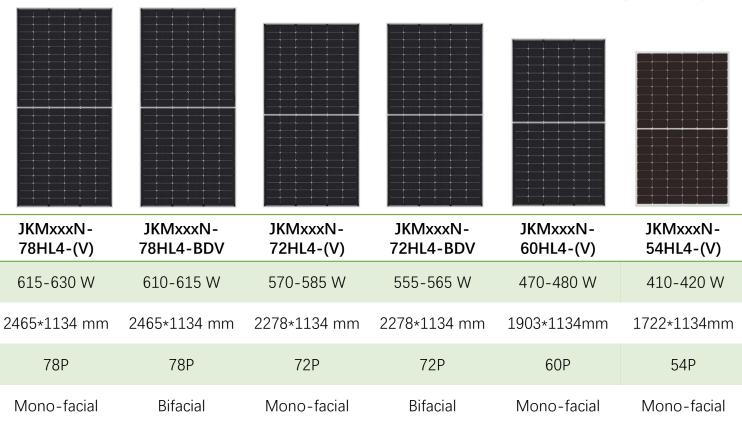
Light Induced Degradation

LID (Light Induced Degradation) is a loss of performances arising in the very first hours of exposition to the sun, with Crystalline modules. LID occurs when oxygen impurities in the silicon wafer react with the doped Boron in the first few hours/weeks of illumination of the cell. When exposed to light, Oxygen atoms diffuse through the silicon lattice and bonds with Boron atoms (present in P-type cells). Bo-oxygen complexes generate their own energy levels in the silicon lattice and can capture electrons and holes. This will reduce the efficiency of the module plate because electrons and holes are the two factors that determine the PV effect that occurs when the module receives sunlight.

LID can cause 1~1.5% loss on current class P (Mono PERC) modules.

Source: IEA PVPS 2014; LETID and backsheet failure added by PVEL, 2019

Outstanding applicability to multiple application scenarios

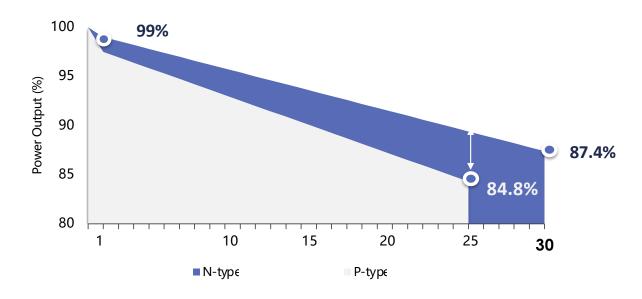

Solar

JinKO

Tiger Neo

- N-type M10/182mm wafer
- TOPCON technology
- Higher efficiency
- Lower degradation
- Higher bifaciality

Product Advantage I Optimized Degradation Advanced Warranty



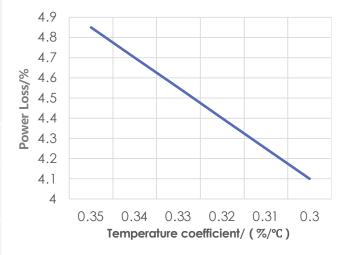
The power warranty could achieve 30 years compared with traditional P-type module. The first year degradation is lower than 1% which means the power output could remain over 87.4% compare with the 1st year

30 years Power Warranty

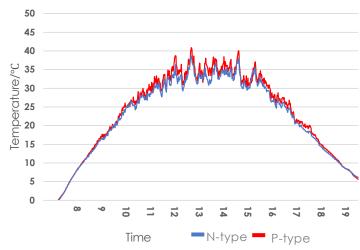
Product Advantage II Optimized Temperature Coefficients

-0.29%/ °C

I


In mono PERC (P type): -0.35%/ $^{\circ}$

	Pmax	cell's temp. at site	ΔΤ	Y	ΔP (W)	P real
P type	600 Wp	65°C	40°C	- 0.35%/ °C	-84	516 W
N type	600 Wp	65°C	40°C	0.30%/ °C	-72	528 W

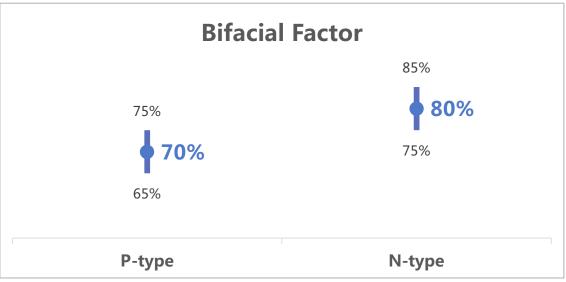


- Tiger Neo's power output will increase with the better temperature coefficient (0.75% higher compared with PERC)
- Under the same external environment, Tiger Neo's operating temperature is lower (>1 % compared with the same specification P type)
- Under high temperature condition, the advantage will further expanded (~2% higher)

Power Loss influenced by temp. coefficient

Real-time operating temperature

Product Advantage **Ⅲ**Bifacial factor 85%


High bifacial factor of N-

type can bring power

generation gain ~ 2.03

%

P total Power =P Front* (1+BSI * Bifi)

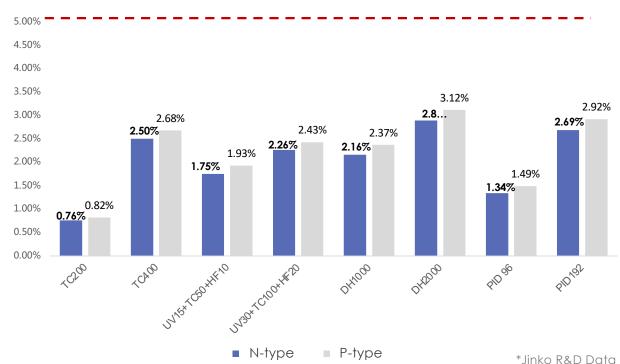
*Bifi: module bifacial factor

*BSI: bifacial stress environmental irradiation coefficient 13.5% (Depends on actual irradiation and ground reflectance)

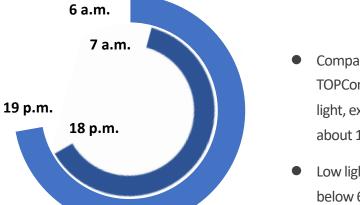
Generation gain due to bifacial factor increase.

PERC: BSI*Bifi (70%) ≈9.45%

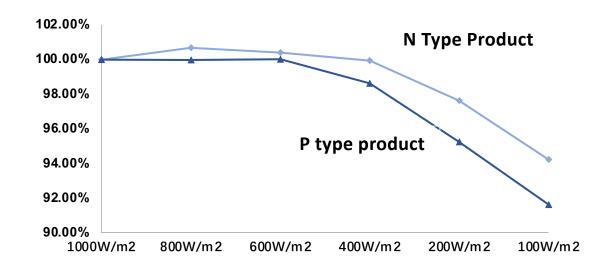
TOPCon: BSI*Bifi (85%) ≈ **11.48%**


Product Advantage IV Enhanced Reliability

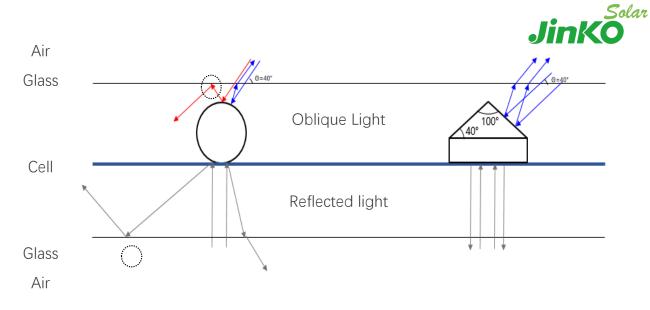
The N-type modules have better indicators than normal IEC standard and performs excellent during test process.


Testing Sample: Jinko N-type mono Module
Jinko P-type mono Module

Product Advantage V Better low light performance



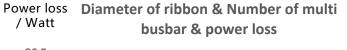
N-type cell, higher internal resistance, longer minority carriers life, naturally better low light response

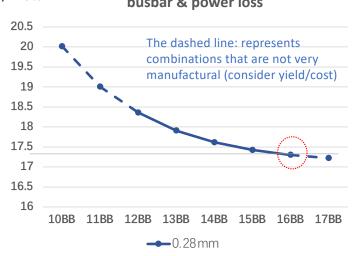

- Compared with traditional PERC modules, N-type TOPCon modules have a better response to low light, extend the power generation period by about 1H in the morning and evening.
- Low light coefficient, especially the performance below 600W/m2, N-type products > P-type products

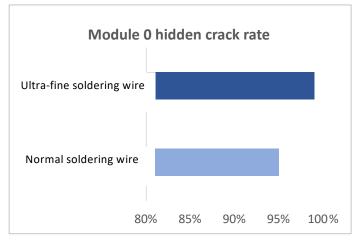
Product Advantage VI High efficient use of light

The use of circular ribbon effectively increases the total reflection of oblique light and the absorption of rear reflected light further improvement of bifacial factor

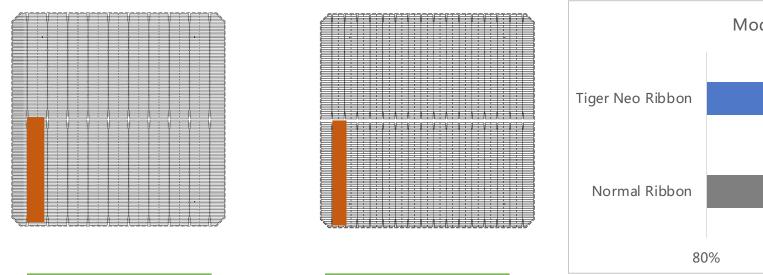
Tilt irradiation	Triangular ribbon	Circular ribbon	
Integrated light utilization	43.33%	54.44%	


Rear Reflected light	Triangular ribbon	Circular ribbon P-type	Circular ribbon N-type	
Bifacial factor	67.8%	70%	85%	

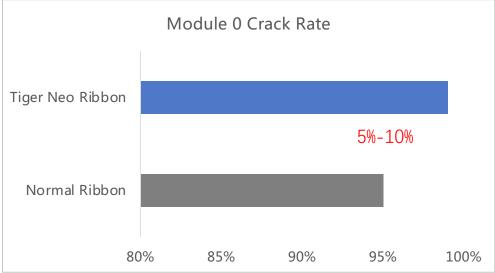

Product Advantage VII Better busbar matching



Jinko SMBB technology, effectively improves current collection capability, reduces the risk of hidden cell cracks and improves power performance


Electrical Analysis: Busbar increases by 1, internal resistance decreases by ~ 4%, corresponding power increases by 0.18%.

Ultra-fine soldering wire improves product quality, 0 hidden crack rate increases by 5%~10%.



Jinko High Quality TOPCon Cell

Normal10BB Cell

TOPcon 16BB Cell

Tiger Neo Superfine wire increases the 0 crack rate

- Jinko N-type TOPCon cell adopts higher quality silicon material, and the yield of the cell with impurity metal content (vanadium, iron and nickel, etc.) is optimized.
- Unlike N-type TOPCon cells, the traditional PERC cell process will carry out laser grooving on the back, which means N-type cell has a more stable structure, and the overall load level of the module is better.

Solar

Content summary: P-type Mono PERC vs N-type TOPCon key differentiates

Aspects	P-type Mono PERC	N-type TOPCon	Comments
Panel efficiency (as of Q2/2022)	~21%	~ 22%	Technically, N-type TOPCon panels produce 20~25Wp higher than P type PERC – on the same panel's area
LID (light induce degradation)	< 2% (usually set as 1.5~1.7%)	< 0.5%	N type has significantly lower LID defect compared to P type, thus enhance panels performance and reliability in longterm
Temperature coefficient of Pmax	-0.35%/°C	-0.29%/°C	N-type modules have particularly outstanding power generation in high temperature environments
Busbar design	9 or 10 busbars	16 busbars	New busbar system on N-type effectively improves current collection capability, reduces the risk of hidden cell cracks and improves power performance
1 st year degradation	2%	1%	N-type TOPcon technical advantages allowed manufacturers committing higher performance
Linear degradation (from 2 nd year)	0.55%/year	0.4%/year	warranty to solar users
Performance warranty (year)	25	30	
Bifacial factor (on Bifacial panels)	65%~75% (70% as standard)	75%~85% (80% as standard)	Higher bifacial factor of N-type can bring power generation gain add up to 2.03%

Improved Energy Generation over 3%

1

Optimized Temperature Coefficients

The advanced N-type HOT2.0 technology brings better temperature coefficients from -0.35% (P-type) to -0.29% (N-type)

2

Higher Bifacial Gain

N-type modules have higher bifacial factor: 70% (P-type) up to 85% (N-type), significantly optimizing power generation capacity.

3

Lower LID / LETID

Low B content in N-type c-Si doped with P (significantly lower LETID from 0.9~1.2% (P-type) to 0.4% (N-type) and improved LID <0.5%)

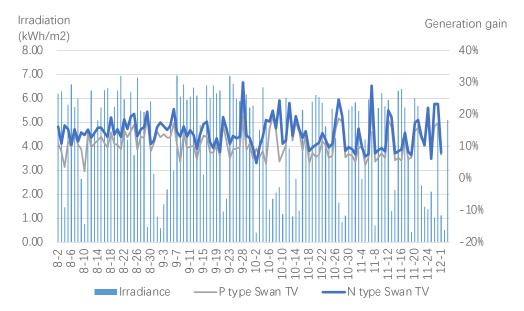
Compared with 158N and 163N, 182N module adopts a more advanced N-type technology of TOPCon instead of PERC, thus bringing a higher generation gain.

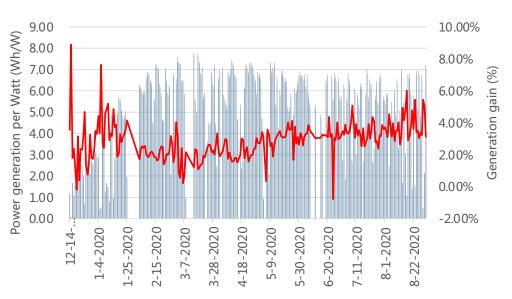
Location: Haining, China

• Ground type: concrete

• Installation: fixed, 0.7m

• Test period: 2019.8.2~2019.12.2

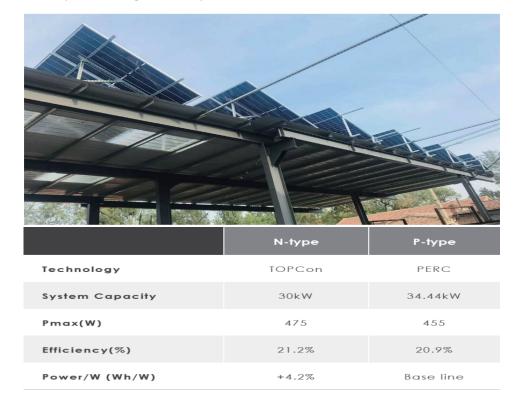


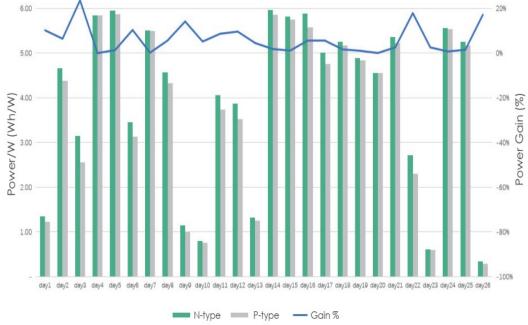

 Location: Ningxia, China Ground type: gravel

• Installation: fixed, 1m

• Test period: 2019/12~2020/9

158mm - N-type showed 2.95\% more generation gain than P-type.




158mm - N-type showed 2.89% more generation gain than P-type.

The N-type TOPCon modules have shown an average 4.2% higher performance compared with PERC modules. It is also conclude that output power of modules increases linearly with the increase of solar irradiance

- Location: Liaocheng Shandong province, Eastern region of China
- Ground type: Metal roof
- Installation: fixed tilt 30° on rooftop
- Test period: August to September 2021

Monitored from 7:00am to 5:00pm, generation gain of N-type TOPCon module has an average of 4.56% over PERC bifacial module, including 6.05% and 10.26% more electricity yield during the time from 7:00 am to 8:00 am and from 16:00 pm to 17:00 pm respectively. This proved better low-light performance of N-type TOPCon module in comparison to PERC.

- Location: Hainan-CN (18°10'-20°18 N,108°37'-111°03' E)
- Ground type: Concrete
- Installation: fixed, 0.5m ~ tilt 34° -Bifacial panels
- Test period: August to September 2021

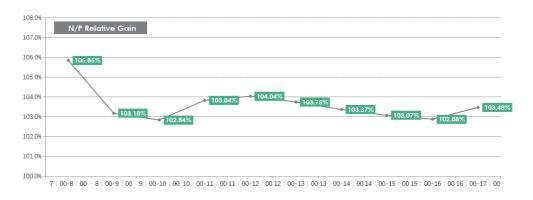


Figure 3. Daily energy yield on a sunny day in Hainan project

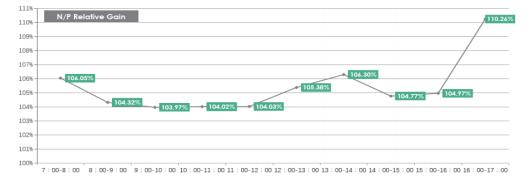


Figure 4. Daily energy yield on a cloudy day in Hainan project

In the tropical climate on the east north coast of Queensland Australia, Jinkosolar' ranging from 4.3-5.5% higher than PERC modules on the white paint surface condition

s N-type bifacial can reach power gain

- Location: Blue Sun project in Queensland Australia (1.5MW)
- · Ground type: White painted steel roof
- Installation: fixed tilt Bifacial panels (cell type 163mm)
- Recorded period: January to December 2020

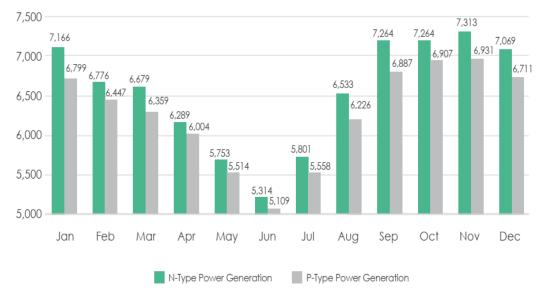
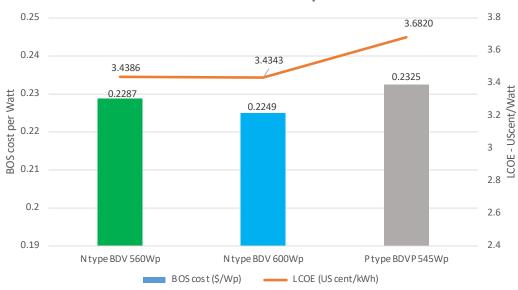


Table 1. Power generation performance of two type modules

Energy Yield comparison – Reference projects


2. Ground mounted bifacial system 35.6MWp_ Suphanburi Thailand

Financial	25 6	NAVA//DC	١

Financ	ial Model-35.6MW	/(DC)	
INPUTS			
Parameters & System	N type BDV	N type BDV	P type BDVP
Configuration	560Wp	600Wp	545Wp
Project (35.59MWp-30MWAC)			
Module Price (USD cents/W)	27.50	27.50	27.00
Power(W/module)	560	600	545
Efficiency(%)	21.68%	21.46%	21.10%
Warranty (years)	30	30	25
First year degradation (%)	1	1	2
Linear degradation (%)	0.4	0.4	0.45
Module Thickness (mm)	30	30	30
Module Length(mm)	2278	2465	2278
Module Width(mm)	1134	1134	1134
Moudule/40' container	720	576	720
Albedo(30 %)			
Bifacial Factor (%)	80	80	70
First year produce energy (MWh)	57,295	57,057	55,238
Number of Modules per string	28	26	28
Number of total inverters	150	150	150
Unit inverter power (kWac)	200	200	200
System Voltage(V)	1,500	1,500	1,500
Quantity of module	63,560	59,306	65,296
Quantity of strings	2,270	2,281	2,332
BOS cost (USD/Wp)	0.2287	0.2249	0.2325
EPC USD per watt	0.5458	0.5419	0.5489
PPA/Fit (0.045 USD/KWh)			
LCOE (US cent/kWh)	3.4386	3.4343	3.6820
Equity IRR	10.70%	10.74%	9.50%
Project IRR	6.92%	6.94%	6.16%

BOS cost and LCOE comparision

	182N-72HC	182N-78HC	182P-72HC
Power (W)	560	600	545
- Δ LCOE (%)	▼ -6.6 %	▼ -6.7 %	-
- Δ BOS (%)	V -1.66%	▼ -3.38%	-

System Design—the combination of inverters

Residential inverter

Isc 14.18A

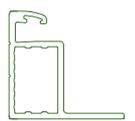
voc 55.40V

100kW inverter

System Design—the combination of mounting system

1P Tracker

NEXTracker A Flex Company ARRAY



High mechanical strength design

Enhanced frame design

- Thicker material
- Thicker cavity

Multiple installation modes ___

- s **↓ ↓ ↓**
- · Bolts installation
- Clamp installation

Mechanical ability against strong wind

The dynamic load test used in a wind tunnel to recreate wind speeds of up to 60m per second, while the static load test simulated bearing capabilities under a snow load equivalent to pressures of -2400 Pascal (Pa).

Testing results prove 182 module types has stronger mechanical strength against wind load, thus significantly improve the reliability and durability in high wind speed scenario

182 module types Static load test
Structural rigidity 1.3 times higher reduced risk of module damage during consistent wind speeds
Monofacial panel Deformation of 43.5mm
Difesial namel

Bifacial panel Deformation of **38.5mm**

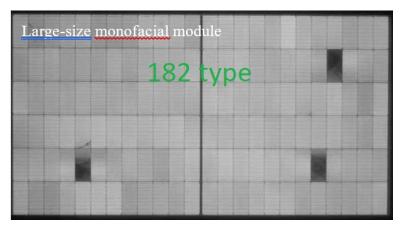
210 module types Static load test

Greater vibration amplititude during the wind tunnel test lead to

heavier Micro crack

Monofacial Deformation of

67 mm


Bifacial panel Deformation of

63mm

Fig. 1: Static load testing of large-size (182) and oversized (210) bifacial panels

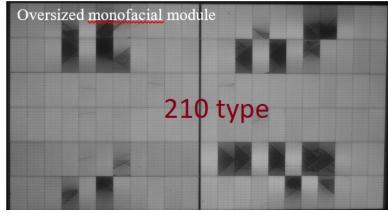
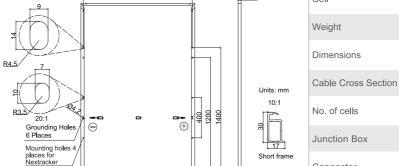


Fig. 2: EL Comparison of large-size (182) and oversized (210) monofacial modules at -2400Pa

MECHANICAL DIAGRAMS


1134±2

tiiiiiiiiii

linnini.

STC

SPECIFICATIONS

30±1

Long frame

Irradiance 1000W/m², cell temperature 25°C, AM1.5G

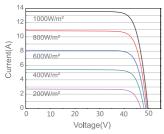
1086

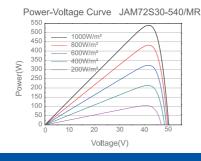
Remark: customized frame color and cable length available upon request

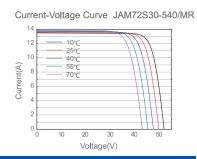
Mounting Ho 8 Places

Cell	Mono
Weight	27.3kg
Dimensions	2278±2mm×1134±2mm×30±1mm
Cable Cross Section Size	4mm² (IEC) , 12 AWG(UL)
No. of cells	144(6×24)
Junction Box	IP68, 3 diodes
Connector	QC 4.10-351/ MC4-EVO2A
Cable Length (Including Connector)	Portrait: 200mm(+)/300mm(-); Landscape: 1300mm(+)/1300mm(-)
Packaging Configuration	36pcs/Pallet 720pcs/40HQ Container

ELECTRICAL PARAMETERS	ELECTRICAL PARAMETERS AT STC								
TYPE	JAM72S30 -530/MR	JAM72S30 -535/MR	JAM72S30 -540/MR	JAM72S30 -545/MR	JAM72S30 -550/MR	JAM72S30 -555/MR			
Rated Maximum Power(Pmax) [W]	530	535	540	545	550	555			
Open Circuit Voltage(Voc) [V]	49.30	49.45	49.60	49.75	49.90	50.02			
Maximum Power Voltage(Vmp) [V]	41.31	41.47	41.64	41.80	41.96	42.11			
Short Circuit Current(Isc) [A]	13.72	13.79	13.86	13.93	14.00	14.07			
Maximum Power Current(Imp) [A]	12.83	12.90	12.97	13.04	13.11	13.18			
Module Efficiency [%]	20.5	20.7	20.9	21.1	21.3	21.5			
Power Tolerance			0~+5W						
Temperature Coefficient of $Isc(\alpha_Isc)$			+0.045%/°C						
Temperature Coefficient of $Voc(\beta_Voc)$			-0.275%/°C						
Temperature Coefficient of Pmax(γ_Pmp)			-0.350%/°C						

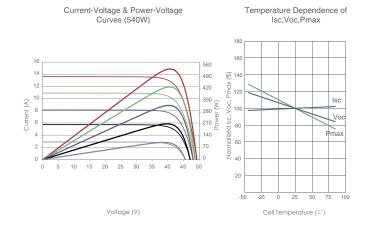

Remark: Electrical data in this catalog do not refer to a single module and they are not part of the offer. They only serve for comparison among different module types.

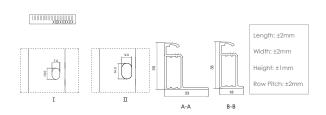

ELECTRICAL PARAMI	OPERATING CONDITIONS							
TYPE	JAM72S30 -530/MR	JAM72S30 -535/MR	JAM72S30 -540/MR	JAM72S30 -545/MR	JAM72S30 -550/MR	JAM72S30 -555/MR	Maximum System Voltage	1000V/1500V DC
Rated Max Power(Pmax) [W]	401	405	408	412	416	420	Operating Temperature	-40°C~+85°C
Open Circuit Voltage(Voc) [V]	46.18	46.31	46.43	46.55	46.68	46.85	Maximum Series Fuse Rating	25A
Max Power Voltage(Vmp) [V]	38.57	38.78	38.99	39.20	39.43	39.66	Maximum Static Load,Front* Maximum Static Load,Back*	5400Pa(112lb/ft²) 2400Pa(50lb/ft²)
Short Circuit Current(Isc) [A]	11.01	11.05	11.09	11.13	11.17	11.21	NOCT	45±2°C
Max Power Current(Imp) [A]	10.39	10.43	10.47	10.51	10.55	10.59	Safety Class	Class II
NOCT	Irradiance 8	300W/m², am	bient temper	ature 20°C,w	rind speed 1m	n/s, AM1.5G	Fire Performance	UL Type 1


*For Nextracker installations, maximum static load please take compatibility approve letter between JA Solar and Nextraker for reference.

CHARACTERISTICS

Current-Voltage Curve JAM72S30-540/MR





Engineering Drawings

Back

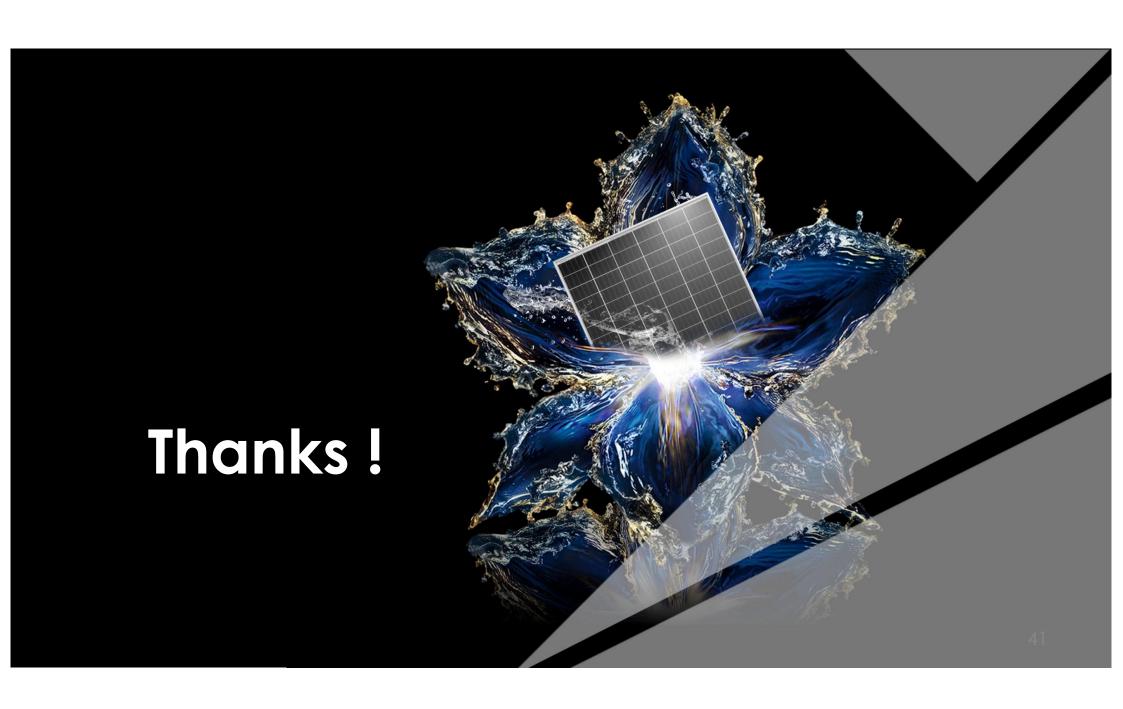
Electrical Performance & Temperature Dependence

Packaging Configuration

(Two pallets = One stack)

31pcs/pallets, 62pcs/stack, 620pcs/ 40'HQ Container

Mechanica	l Characteristics
Cell Type	P type Mono-crystalline
No. of cells	144 (6×24)
Dimensions	2278×1134×35mm (89.53×44.65×1.38 inch)
Weight	28 kg (61.73 lbs)
Front Glass	3.2mm,Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass
Frame	Anodized Aluminium Alloy
Junction Box	IP68 Rated
Output Cables	TUV 1×4.0mm ² (+): 400mm , (-): 200mm or Customized Length


SPECIFICATIONS											
Module Type	JKM540M-72HL4 JKM540M-72HL4-V			JKM545M-72HL4 JKM545M-72HL4-V		JKM550M-72HL4 JKM550M-72HL4-V		JKM555M-72HL4 JKM555M-72HL4-V		JKM560M-72HL4 JKM560M-72HL4-V	
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	
Maximum Power (Pmax)	540Wp	402Wp	545Wp	405Wp	550Wp	409Wp	555Wp	413Wp	560Wp	417Wp	
Maximum Power Voltage (Vmp)	40.70V	38.08V	40.80V	38.25V	40.90V	38.42V	40.99V	38.59V	41.09V	38.69V	
Maximum Power Current (Imp)	13.27A	10.55A	13.36A	10.60A	13.45A	10.65A	13.54A	10.70A	13.63A	10.77A	
Open-circuit Voltage (Voc)	49.42V	46.65V	49.52V	46.74V	49.62V	46.84V	49.72V	46.93V	49.82V	47.02V	
Short-circuit Current (Isc)	13.85A	11.19A	13.94A	11.26A	14.03A	11.33A	14.12A	11.40A	14.21A	11.48A	
Module Efficiency STC (%)	20.9	90%	21.	10%	21.29%		21.4	21.48%		21.68%	
Operating Temperature(°C)					-40°C~+	-85°C					
Maximum system voltage					1000/1500	VDC (IEC)					
Maximum series fuse rating					25A	4					
Power tolerance					0~+3	3%					
Temperature coefficients of Pmax					-0.35%	5/°C					
Temperature coefficients of Voc	-0.28%/℃										
Temperature coefficients of Isc		0.048%/℃									
Nominal operating cell temperatu	re (NOCT)				45±2	°C					

